FRELP

Full Recovery End Life Photovoltaic

Technical Progress – september 2015

September 2015

The test phase was completed in July 2015 and at the beginning of October the progress report will be presented to the European Commission.

On September 25, 2015 was held at the Laghetto Gabella of Curino a seminar to present the progress of the project. At this link you can download the conference presentations and see some photos of the day.

The initial phases of the project were as follows:

I-    Posting mechanical robot of aluminum profiles, connectors, glass and sandwiches (RAC + REV)

II-   Pyrolysis Eva II to recover the silicon metal and other metals (PES)

III-  Leaching acid by filtration to separate the silicon from other metals (ALF)

IV-   Electrolysis IV to recover copper and silver and neutralization treatment of acid water (OME)

At the end of the trial, because of the presence of fluorinated plastic in the sandwich, it had to abandon the pyrolysis process, which would have resulted in emissions of fluorine with the fuels cracking, and it is opted for the incineration of the sandwich, to be performed at a external company that has already given an initial availability of maximum (Phase TES).

In practice, the results of the experiment possible to confirm the validity of the initial project, with the only variant of incineration instead of pyrolysis.

They have already been pre-built prototypes of some components of Phase I, and now, on the basis of the overall results obtained in the trial, would like to start the realization of the complete project, for which the use of acquiring:

  • the waste code for the conferment of the panels;
  • the code for the treatment of residues of the bottom of the treatment of waste to energy;
  • the authorization to the construction of the pilot plant, and in particular of phases III and IV, as for phase I is of purely mechanical treatments, while the phase III is an operation to make the outside.

The ultimate impact expected from this project is shown schematically in the following mass flow:

FRELP MASS FLOW (15.09.15)

and can be thus summarized:

every 1.000 kg of input panels are obtained:

–          180 kg of aluminum metal to sell on the market;

–          10 kg of connectors to give the WEEE;

–          700 kg of white glass of high quality for sale on the market;

–          36,5 kg of silicon metal to be recovered by filtration after leaching and for sale in the metallurgical sector;

–          1,67 kg of copper and silver recovered at cathodes electrolysis and for sale on the market;

–          120 kg of calcium nitrate in aqueous solution to the silo to be used as fertilizer in agriculture;

The total yield of these components is 93% and the loss is represented by 6% from plastics intended for combustion and residual recovered metals as hydroxides.

By contrast, we have the following environmental impact:

  • 20 kg: production of hydroxides of various metals (tin, aluminum, lead, zinc) to be disposed of in landfill as waste;
  • 2 kg: NOx emissions to the anode of the electrolysis (to be verified);
  • 5 kg: production (at the waste to energy plant) of ash resulting from the reduction in special fluorine with sodium bicarbonate and/or calcium carbonate, at the waste to energy plant (to be verified).

It must be said that there is currently no industrial technology that allows to achieve a yield of 93% and that the problem of disposing of the photovoltaic panels will have a major impact as early as 2017.

The pilot plant which is planned will have the processing capacity of 1 t/hour of photovoltaic panels to a maximum of 8.000 t/year.

According to forecasts in the draft, submitted for approval to the Province of Biella the 29th September 2015, the plant should be active from 2017.

Advertisements

Comments are closed.